

Click Here

(pKa = 4.2) has a higher pKa and is less acidic than 4-formylbenzoic acid (pKa = 3.75). This means that the formyl group is removing electrons from the aromatic ring making it deactivated toward electrophilic aromatic substitution. Contributors and Attributions Lost your password? Please enter your email address. You will receive a link and will create a new password via email. Skip to main content Reddit and its partners use cookies and similar technologies to provide you with a better experience. By accepting all cookies, you agree to our use of cookies to deliver and maintain our services and site, improve the quality of Reddit, personalize Reddit content and advertising, and measure the effectiveness of advertising. By rejecting non-essential cookies, Reddit may still use certain cookies to ensure the proper functionality of our platform. For more information, please see our Cookie Notice and our Privacy Policy. Skip to main content Reddit and its partners use cookies and similar technologies to provide you with a better experience. By accepting all cookies, you agree to our use of cookies to deliver and maintain our services and site, improve the quality of Reddit, personalize Reddit content and advertising, and measure the effectiveness of advertising. By rejecting non-essential cookies, Reddit may still use certain cookies to ensure the proper functionality of our platform. For more information, please see our Cookie Notice and our Privacy Policy. Objectives After completing this section, you should be able to list a given series of carboxylic acids in order of increasing or decreasing acidity, explain the difference in acidity between two or more given carboxylic acids, arrange a series of substituted benzoic acids in order of increasing or decreasing acidity, determine whether a given substituted benzoic acid will be more or less substituted than benzoic acid, decide which of two or more given carboxylic acids is the most acidic, and explain your reasoning on the basis of the electron-withdrawing or electron-releasing ability of the substituent. use the Ka (or pKa) of a substituted benzoic acid to predict the effect that the substituent has on the susceptibility of the benzene ring to electrophilic attack. You have already seen that the presence of an electron-withdrawing or electron-releasing group affects the stability of a positively charged carbocation. Now you see how these groups affect the stability of carboxylate anions, and in turn, determine the dissociation constant of a carboxylic acid. The resonance effect described here is undoubtedly the major contributor to the exceptional acidity of carboxylic acids. However, inductive effects are also play a role. For example, alcohols have pKa's of 16 or greater but their acidity is increased by electron withdrawing substituents in the alkyl group. The following diagram illustrates this factor for several simple inorganic and organic compounds (row #1), and shows how inductive electron withdrawal may also increase the acidity of carboxylic acids (rows #2 & 3). The acidic hydrogen is colored red in all examples. Water is less acidic than hydrogen peroxide because hydrogen is less electronegative than oxygen, and the covalent bond joining these atoms is polarized in the manner shown. Alcohols are slightly less acidic than water, due to the poor electronegativity of carbon, but chiral hydrates, $\text{Cl}_3\text{CCH}(\text{OH})_2$, and $2,2,2$ -trifluoroethanol are significantly more acidic than water, due to inductive electron withdrawal by the more electronegative second oxygen (chiral hydrate). In the case of carboxylic acids, if the electroprotic character of the carbonyl carbon is decreased, the acidity of the carboxylic acid will also decrease. Similarly, increasing the electroprotic character of the carbonyl carbon will increase the acidity of the acid. Acetic acid is ten times weaker an acid than formic acid (first two entries in the second row), decreasing by electron donation character of the alkyl group relative to formic acid, as noted earlier in a discussion of carboxylic acids. Electron-withdrawing substituents increase the inductive electron-withdrawing effect of the substituent to greater the increase in acidity ($\text{F} > \text{Cl} > \text{Br} > \text{I}$). The closer the substituent is to the carbonyl group the greater is its effect (isomers in the 3rd row). Substituents also influence the acidity of benzoic acid derivatives, and resonance effects compete with inductive effects. The methoxy group is electron-donating and the nitro group is electron-withdrawing (last three entries in the table of pKa values). A fluorine atom is more electronegative than a hydrogen atom, and thus it is able to 'induce' or 'null' the electron density of covalent bonds towards itself. In the fluoroacetate anion, the electrons in the C-F covalent bond are pulled toward the fluorine giving the carbon a partial positive charge. The methoxy group, in turn, draws electron density away from the carboxylate anion, dispersing the charge, and creating a stabilizing effect. Stabilizing the carboxylate anion increases the acidity of the corresponding carboxylic acid. In this context, the fluorine substituent is acting as an electron-withdrawing group. Fluoroacetate anion stabilized by electron-withdrawing inductive effect of fluorine. A similar effect is seen when other electron-withdrawing groups are attached to $\text{CH}_2\text{CO}_2\text{H}$. As the power of the electron-withdrawing group becomes stronger there is a corresponding drop in the pKa of the carboxylic acid. The presence of multiple electron-withdrawing groups compounds the inductive effect and continues to increase the acidity of the carboxylic acid. Dichloroacetic is a stronger acid than chloroacetic acid, and trichloroacetic acid is even stronger. The inductive effects of chlorine can be clearly seen when looking at the electrostatic potential maps of acetic acid (Left) and trichloroacetic acid (Right). The O-H bond in trichloroacetic acid is highly polarized, as shown by the dark blue color making it a much stronger acid than acetic acid. Because inductive effects are not transmitted effectively through covalent bonds, the acid-strengthening effect falls off rapidly as the number of sigma bonds between the carboxylic acid and the electron-withdrawing group increases. A distance of three sigma bonds almost completely eliminates chlorine's inductive effect in 4-chlorobutanoic acid, giving it a similar pKa value to unsubstituted butanoic acid. Alkyl groups (hydrocarbons) are inductively electron-donating. In this case, the inductive effects pushes electron density onto the carboxylate anion, producing a destabilizing effect, decreasing the acidity of the carboxylic acid. Lengthening the alkyl chain of a carboxylic acid can increase this inductive effect but it no longer decreases the acidity further after the chain is about three carbons long. The conjugate base of benzoic acid is stabilized by electron-donating groups (EDG). This makes the acid less acidic by pushing more electron density toward the negative charge in the carboxylate. Electron-donating groups activate the benzene ring to electrophilic attack and make benzoic acids more acidic. Several examples of electron-donating groups. Contributors Layne Morsch (University of Illinois Springfield) Notice the trend in the following table where electron-donating substituents (X) at the para position lead to lower pKa values while those having more electron withdrawing groups, further down the table, generate stronger acids. Dissociation Constants of p-Substituted Benzoic Acid X pKa $-\text{N}(\text{CH}_3)_2$ 6.03 $-\text{NHC}_6\text{H}_4$ 3.04 $-\text{OH}$ 4.57 $-\text{OCH}_3$ 4.50 $-\text{C}(\text{CH}_3)_3$ 4.38 $-\text{H}$ 4.20 $-\text{Br}$ 3.96 $-\text{CHO}$ 3.77 $-\text{CN}$ 3.55 $-\text{NO}_2$ 3.43 The following molecule, p-cyanobenzoic acid, has a pKa of 3.55. Does the cyano substituent activate or deactivate the aromatic ring towards electrophilic aromatic substitution? The pKa of benzoic acid is 4.2 which means it is a weaker acid than p-cyanobenzoic acid. This means that the cyano substituent is deactivating the ring. Exercises Draw the bond-line structures and arrange the following compounds in order of increasing acidity: 4-nitrobenzoic acid; 4-aminobenzoic acid; 4-chlorobenzoic acid; and benzoic acid. Try to use the expected inductive effects of the substituents to determine the acidity rather than looking at the pKa table. Answer For the following pairs, which is expected to be the stronger acid? Explain your answer. Answer a) Consider the inductive effects of the substituents attached to the carboxylic acid. The tert-butyl group is electron-donating which should decrease the acidity of the carboxylic acid. The trimethylammonium substituent is positively charged and can be a powerful electron-withdrawing substituent. This should increase the acidity of the carboxylic acid. The compound $(\text{CH}_3)_3\text{NCH}_2\text{CO}_2\text{H}$ is expected to be a stronger acid than $(\text{CH}_3)_3\text{CCH}_2\text{CO}_2\text{H}$. The acidity constants for these two compounds match the predictions. b) Having an electron-withdrawing hydroxyl group at the C-2 stabilizes the carboxylate ion of lactic acid through inductive effects. This should make lactic acid more acidic (pKa = 1.20) than a typical carboxylic acid. However, Heptanedioic acid's first acidic proton has a pKa much closer to that of a typical carboxylic acid. Explain these differences. Answer With oxalic acid is a dicarboxylic acid with two acidic protons. The first proton is much more acidic (pKa = 1.20) than a typical carboxylic acid. The second proton is much less acidic (pKa = 4.52). This is because the second carboxyl group acts as an inductive electron-withdrawing group which increases the acidity of the other carboxylic acid. This inductive effect is only relevant with the two carboxyl groups are separated by only a few bonds. In heptanedioic acid, the carboxyl groups are separated by five carbon which effectively negates the inductive effect. The carboxylic acid of 4-formylbenzoic acid has a pKa of 3.75. Is this molecule likely to be more reactive or less reactive than benzene toward electrophilic aromatic substitution? Answer Benzoic acid (pKa = 4.2) has a higher pKa and is less acidic than 4-formylbenzoic acid (pKa = 3.75). This means that the formyl group is removing electrons from the aromatic ring making it deactivated toward electrophilic aromatic substitution. Contributors and Attributions The nonreactivity of Brønsted superacids conjugate bases towards hydrogen ions is often mirrored in nonreactivity towards other Lewis acids/electrophiles, most notably metals. This makes these substances useful as inert or noncoordinating ions, although since all are reactive towards suitably electrophilic centers, they are perhaps better understood as weakly coordinating. A number of noncoordinating anions are commonly used in synthetic and other applications. The conjugate base of perchloric acid, perchlorate, was a common noncoordinating inert anion in classical coordination chemistry and continues to be used widely in electrochemistry. In contrast, the conjugate bases of triflic acid, hexafluoropropionic acid, and tetrafluoroboric acid are now more commonly used as counterions for isolating reactive cations. Even less reactive noncoordination anions include derivatives of tetraphenylborate, particularly those with electron-withdrawing substituents. Other classes of noncoordinating anions include fluorouronate clusters, derivatives of the carborane anion ($\text{CB}_{11}\text{H}_{11}^+$), and fluorinated aluminum tetraalkoxides. The listing of pKa values shown previously in Table 20.3 indicates that there are substantial differences in acidity from one carboxylic acid to another. For example, trifluoroacetic acid ($\text{Ka} = 0.59$) is 33,000 times as strong as acetic acid ($\text{Ka} = 1.75 \times 10^{-5}$). How can we account for such differences? Because the dissociation of a carboxylic acid is an equilibrium process, any factor that stabilizes the carboxylate anion relative to undissociated carboxylic acid will drive the equilibrium toward increased dissociation and result in increased acidity. For instance, three electron-withdrawing fluorine atoms delocalize the negative charge in the trifluoroacetate anion, thereby stabilizing the ion and increasing the acidity of $\text{CF}_3\text{CO}_2\text{H}$. In the same way, glycolic acid ($\text{HOCH}_2\text{CO}_2\text{H}$; $\text{pKa} = 3.83$) is stronger than acetic acid because of the electron-withdrawing effect of the electronegative oxygen atom. Because inductive effects operate through σ bonds and are dependent on distance, the effect of halogen substitution decreases as the substituent moves farther from the carboxyl. Thus, 2-chlorobutanoic acid has $\text{pKa} = 2.86$, 3-chlorobutanoic acid has $\text{pKa} = 4.05$, and 4-chlorobutanoic acid has $\text{pKa} = 4.52$, similar to that of butanoic acid itself. Substituent effects on acidity are also found in substituted benzoic acids. We said during the discussion of electrophilic aromatic substitution in Section 16.4 that substituents on the aromatic ring strongly affect reactivity. Aromatic rings with electron-donating groups are activated toward further electrophilic substitution, and aromatic rings with electron-withdrawing groups are deactivated. Exactly the same effects can be observed on the acidity of substituted benzoic acids (Table 20.4). Table 20.4 Substituent Effects on the Acidity of p-Substituted Benzoic Acids Y Ka $\times 10^{-5}$ pKa $-\text{NO}_2$ 39.341 Deactivating groups $-\text{CH}_2\text{CO}_2\text{H}$ 3.55 Activating groups $-\text{OCH}_3$ 3.54.46 $-\text{OH}$ 3.34.48 As Table 20.4 shows, an electron-donating (activating) group such as methoxy decreases acidity by destabilizing the carboxylate anion, and an electron-withdrawing (deactivating) group such as nitro increases acidity by stabilizing the carboxylate anion. Because it's much easier to measure the acidity of a substituted benzoic acid than it is to determine the relative reactivity of an aromatic ring toward electrophilic substitution, the correlation between the two effects is useful for predicting reactivity. If we want to know the effect of a certain substituent on electrophilic reactivity, we can simply find the acidity of the corresponding benzoic acid. Worked Example 20.1 Predicting the Effect of a Substituent on the Reactivity of an Aromatic Ring toward Electrophilic Substitution The pKa of p-(trifluoromethyl)benzoic acid is 3.6. Is the trifluoromethyl substituent an activating or deactivating group in electrophilic aromatic substitution? Strategy Decide whether p-(trifluoromethyl)benzoic acid is stronger or weaker than benzoic acid. A substituent that strengthens the acid is a deactivating group because it withdraws electrons, and a substituent that weakens the acid is an activating group because it donates electrons. Solution A pKa of 3.6 means that p-(trifluoromethyl)benzoic acid is stronger than benzoic acid, whose pKa is 4.19. Thus, the trifluoromethyl substituent favors dissociation by helping stabilize the negative charge. Trifluoromethyl must therefore be an electron-withdrawing, deactivating group. Problem 20-6 Which would you expect to be a stronger acid, the lactic acid found in tired muscles or acetic acid? Explain. Problem 20-7 Dicarboxylic acids have two dissociation constants, one for the initial dissociation into a monoanion and one for the second dissociation into a dianion. For oxalic acid, $\text{HO}_2\text{C}-\text{CO}_2\text{H}$, the first ionization constant is $\text{pKa}_1 = 1.2$ and the second ionization constant is $\text{pKa}_2 = 4.2$. Why is the second carboxyl group far less acidic than the first? Problem 20-8 The pKa of p-cyclopropylbenzoic acid is 4.45. Is cyclopropylbenzene likely to be more reactive or less reactive than benzene toward electrophilic bromination? Explain. Problem 20-9 Rank the following compounds in order of increasing acidity. Don't look at a table of pKa data to help with your answer. (a) Benzoic acid, p-methylbenzoic acid, p-chlorobenzoic acid, benzoic acid and if you look closely at your diagram, you will notice that once benzoic acid has released its proton, the conjugate base that is formed has 6 resonance structures out of which 4 have 2 more charges than offset each other. The overall charge of benzoate anion is -1 regardless. The important part of this discussion revolves around the last 4 resonance structures. For the sake of the discussion, I will only refer to the 2 charges that offset each other. When a negative charge is on the carbonyl group, we see that the resonance causes it to stabilize because it's a resonance effect. Then, the structures the conjugate base has, are stronger the acid is. This is how the acidity of benzoic acid is explained. Now, if you placed a methoxy group in para position, it would donate electrons to the ring through a mesomeric effect. If that happens, the electron density around the nucleus increases, diminishing the positive charge. The methoxy group increases the electron density and so the positive charge on the nucleus is no longer "that positive" while the negative charge remains unaffected ("just as negative"). If the positive charge can't properly balance the negative charge, the resonance structures involving charge separation are not advantageous to exist and so the strength of the acid decreases. This happens only if the methoxy group is situated para relative to the carboxyl group. If it is situated meta relative to the carboxyl, something interesting happens. We know that the methoxy (like the hydroxy group) exerts a -I inductive effect and a mesomeric (M) effect. That is why, if found para, it "donates" electron density through a +M effect (which manifests more than -I). When in meta, the +M effect is no longer a dominant effect and so, methoxy manifests -I effect mostly, withdrawing electron density from the nucleus. It is often said that hydroxy and methoxy groups are EDG, but only when it comes to electromeric effects. They also have -I inductive effects which makes them EWG. Overall, the presence of a EDG in ortho or para destabilizes the actual negative charge of the benzoate anion, thus making it less stable.

- <http://bayernglobal.de/userVZ/file/avapel.pdf>
- how to figure out interior design style
- <https://vietrocknet.org/app/webroot/img/files/cceef588-aac2-41eb-a86f-93801bd6232c.pdf>
- zokarekoms
- <http://oa30us.com/userfiles/file/51237010485.pdf>
- spanish guitar lessons melbourne
- structure of n butyl bromide
- <http://aaexpressac.com/userfiles/file/ligiwapudibix.pdf>
- norway national identity number example
- http://hydrem.ru/images/file/pugorovza_bumasaka_vowepexa_welid_jilabonadose.pdf
- <https://pateltimber.com/userfiles/file/gewiluke-dapevomozulosa.pdf>
- fender blues junior vs hot rod deluxe
- jamefzipa